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Developments in the field of nonlinear dynamics has given us a new conceptual framework
for understanding the mechanisms involved in the regulation of complex nonlinear systems.
This concept. called “*chaos™ or **deterministic chaos,”” has been applied to EKG, EEG,
and other physiological signals, but not yet to the ENG signal. The underlying geometrical
structure in chaotic dynnmics is fractal (noninteger dimension), and colculating the fractal
dimension of the electronystagmographic recording from caloric tesling gave a dimension
ranging from 3.3 to 7.7. This result demonstrates that the multidimensional vestibular system,
with ils numerous neurological pathways, can somehow reduce the degrees of freedom
and give rise to an irregular dynamic low-dimensional behavior, which is associated with
deterministic chaos. € 1993 Academic Press. Inc.

|. INTRODUCTION

The main purposes of this paper are (a) to present the idea of nonlinear
dynamics applied to the vestibular system—which is one of the three sensory
systems concerned with balance and equilibrium (in addition to the visual and
the somatosensory system)-—and (b) to suggest using the fractal dimension as
a parameter lo quantify the irregular pattern of the nystagmus movements.

Nystagmus is a rhythmic, involuntary, back-and-forth eye movement. The
electrical recording of nystagmus is called electronystagmography (ENG). ENG
is possible because the eye is charged positively at the cornea and negatively
at the retina, creating an electrical dipole known as the corneoretinal potential
).

Considerations about the nystagmus dynamics presented here are based on
a time-series analysis of ENG recordings from standard clinicat caloric testing.
Caloric nystagmus is produced by irrigating the external auditory canal with
water 7°C below and above body temperature (Fig. 1). The caloric test deter-
mincs if the lateral semicircular canal and its nervous pathways arc functioning
normally.

The experimental approach is inspired by ideas from the field of nonlinear
dynamics which is called deterministic chaos.
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Fi1G. 1. The caloric test determines if the labyrinthine end organs and the nervous system pathways
are functioning normally. Cold or warm water is irrigated into the external auditory canal, and the
resulting eye movements are recorded for analysis.

The dynamical interpretation of the vestibular system through the ENG signal
is from the following assumptions:

(1) The nystagmus dynamics during caloric testing reflect intrinsic dynamic
properties of the regulating mechanism in the underlying vestibuiar control
system.

(2) Information about the control mechanism governing the nystagmus re-
sponse is hidden in the irregular pattern of the ENG signal.

(3) Nonlinear dynamic properties of the vestibular system generate a complex
irregular nystagmus movement which is there on purpose—i.e., as a vital and
necessary regulating function.

1.1. Irregularity as Noise and Irregularity as Intrinsic Dynamic Properties

It is important to emphasize the difference between (a) irregularity as ran-
domly generated variations and (b) irregularity/chaos determined by intrinsic
dynamical properties of the physiological regulating system:

(a) Irregularity as a result of increased noise; the physiological system does
not regulate, but functions more like a noise generator.

(b) Irregularity determined by intrinsic dynamic properties in the physiologi-
cal regulating system for the purpose of inhibiting intense stimuli and providing
the system with a flexible and functional regulatory mechanism.

1.2, Irregularity—A Hallmark of Physiological Healthiness?

A system which responds proportionally to a disturbance is mathematically
easy to interpret. The mechanisms governing the human physiology are more
complex. It is hypothesized that the normal irregular nystagmus behavior (Fig.
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F1G. 2. {(a) The expression of ““ideal nystagmus’’ is a highly theoretical notion which refers to
a regular and predictable nystagmus. (b) A real caloric-induced nystagmus is in contrast a back-
and-forth eve movement which never repeats itself, a complex behavior where it is impossible to
predict when the slow phase stops and the fast phase begins, and vice versa. (Upward direction
. represents eye movement to the right, and downward direction represents eye movement to the
left.) (c) The eye velocity {derivative of (b)). (d) The eye acceleration (derivative of (c)). (e)
Topographic representation of the nystagmus dynamics in the phase plane (position and velocity).
(f) Phase-plane plot of acceleration versus velocity. (All plots are given for a 20-sec time period.)

2) is a resuit of dynamic properties in the vestibular and eye movement system
whose purpose is to maintain control. Alan Garfinkel illustratively describes
the catastrophical mechanism of too regular behavior in *‘Open Peer Commen-
tary’” to Skarda and Freeman’s article, ““How Brain Makes Chaos in Order to
Make Sense of the World’ (2):
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“In epileptic seizures, the EEG becomes regular and periodic, and it
is the normal (*‘desynchronized™’) EEG that is irregular. Given the
undesirability of periodic cortical behavior, it is reasonable to suppose
that the nervous system has evolved a reliable mechanism to desyn-
chronize the EEG. As an example of the utility of such “‘active desyn-
chronization’”, consider the behavior of a platoon of soldiers crossing
a bridge. Since periodic behavior (marching in ranks) might set the
bridge into destructive resonant oscillation, the soldiers ‘“‘break
ranks”. ... In general, it may be that for all oscillatory processes in
physiology, a perfect periodic oscillation is undesirable. Chaos could
here play the role of introducing a useful wobble into the period or
amplitude, while retaining the overall form of the process.”
In 1982 Fluur reported from a study of rotatational testing of dizzy patients
(3
**... efferent inhibition .. .modulates the nystagmus as a kind of de-
fence mechanism against too intensive stimuli ... the nystagmus be-
comes irregular when the inhibition increases but, on the other hand,
becomes more regular when the inhibition disappears.™
Although Fluur describes irregular nystagmus behavior in contrast to the
“‘generally more regular nystagmus,’” he expresses the same idea of a mecha-
nism which provides *“‘controlled randomness’ for the purpose of maintaining
control.

1.3. Deterministic Chaos

Recent developments in the field of nonlinear dynamics have led to new
ways of understanding the mechanism involved in regulating complex nonlinear
systems. This new concept is called chaos or deterministic chaos (4-7), and it
refers to irregularity that arises in a deterministic system. Chaotic systems
exhibit sensitive dependence on initial conditions, which means that the system
balances on the boundary between multiple possibilities where a slight perturba-
tion forces the system in a new direction. Because of the system’s sensitive
dependence on the environment, long-term prediction becomes impossible,

A characteristic property of chaotic dynamics is that the underlyving structure
of the complex geometric shape in phase space (sce below) has an inner regular-
ity. This regularity can be calculated, and the measure is called the fractal
dimension. The term fractal was coined by Benoit B. Mandelbrot (8).

1.4. Fractal Geometry

In the terminology of classical geometry we live in a three-dimensional space,
the surface has two dimensions, and the line has one dimension. Fractal geome-
try, on the other hand, is recognized by noninteger dimensions. A coastline,
for instance, will have a dimension between one and two (a higher dimension
than a one-dimensional line and a lower dimension than a two-dimensional
surface). Another characteristic property of fractal geometry is that the geomet-
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ric structure is self-similar across different scales. It is not identical in details,
but the structure will essentially have the same statistical properties. If you,
for example, zoom in on the branches of a tree, new branches become visible.
At higher magnification more details are unveiled. Physically there exists a
lower boundary for this branching structure. Idealized fractals, i.e., fractals
governed by mathematical equations, have infinite branching patterns or struc-
tures.

Anatomical fractal-like structures can be found in the airways of the lung
and in the networks of blood vessels, nerves, and ducts (9).

Fractals can also be illustrated by a definition of dimension, which calculates
the regularity inherent in the chaotic structure of a strange attractor (see below)
or the branching pattern of a geometric shape. One can think of the fractal
dimension both as a measure of the amount of space which is occupied and as
a scaling factor which accounts for the self-similar structure.

There are many measures of the dimension of a fractal structure. The most
common definition of dimension is capacity dimension. Another definition of
fractal dimension, which has been applied successfully on time-series data, is
correlation dimension (6, 10, 11).

The fractal dimension of a time-series is also related to the smallest number
of first-order differential equations necessary to capture the qualitative features
of the system’s dynamics.

1.5. Phase Space and Attractors

A system’s dynamical behavior can be represented in an abstract mathemati-
cal space known as phase space. It takes the form of a trajectory which reflects
the system’s behavior over a given period of time. The axis may consist of a
combination of the position versus velocity versus acceleration, or some other
active variables which determine the system’s evolvement in time. The subset
of points in phase space which trajectories return to after all transients die out
is referred to as an artractor, Figure 3 shows a fixed-point attractor (I11a), a limit
cycle (I1Ib), and a strange (chaotic) attractor (Illc). The nystagmus attractor
(nystagmus spectrum) reflects a complicated dynamic behavior where nonlinear
properties spread the trajectories to a fan-like structure and then fold it back
to a small local area of space. The procedure of stretching and folding prevents
predictability of the system’s history, without destroying the global structure.
The phase space plot of I1Id (Fig. 3) takes the form of a randomly occupied
area with no global structure. Figure 4 shows a three-dimensional portrait
(position—velocity—acceleration) of the nystagmus attractor.

2. METHODS
2.1. Material and Recording Techniques

The ENG signals were recorded in three healthy subjects, according to con-
ventional caloric test procedures, as introduced by Fitzgerald and Hallpike in
1942 (12). Caloric nystagmus was obtained by running water 7°C below and
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F1g. 3. Four main mathematical models have been developed to characterize time-series (7): (a)
steady states, (b) oscillations, {c) chaos, and (d) noise. (I) time plane, (II) frequency plane, (111

phase space.



562 TORBJ@RN AASEN

F1G. 4. The nystagmus attractor presented in a three-dimensional phase space portrait (posi-
tion—velocity—acceleration). The region where the trajactories follow close to each other represents
nystagmus’ slow component, The attractor is presented from four different viewpoints,

above body temperature into the external auditory canals. Horizontal eye move-
ments were recorded with two electrodes placed at each side of the eyes and
a reference electrode in the center of the forehead. The data were digitized
into an IBM-compatible computer, using 12-bit A/D resolution and 100- or 200-
Hz sampling frequency.

2.2. Smoothing the Data

A nonlinear algorithm, called the simplified least-squares procedure, was
used for smoothing the recorded ENG signals (/3).

A polynomial of degree » < 2m + 1 was fitted to a set of 2m + | data points
in such a way that the mean square of the difference between calculated values
and the time-series values was a minimum. The center abscissa of the set was
then substituted with the central point of the polynom, which is the best mean
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square fit. The point at one end of the data set was then dropped, and the next
point at the other end was added. The process was repeated until the whole
time-series of data points had been modified.

2.3. Pseudo-Phase Space

One way to reconstruct the complex behavior of a system consisting of many
interacting components from a single time variable is by introducing a time
delay (10, 71, 14). Changes in one variabie will be recognized by other variables,
and the interaction of the components will determine the system’s dynamics.

The time-series

XU: XO(tl)s X()(r2)! vy XO{IN)e

where N is the number of data points, can be reconstructed in a multidimensional
phase space.
If the number of variables is defined as n, we get

Xot Xolt), Xo(5a), o o, Xo(20)
X]:Xu(tl + T),Xo(tz + T), ey X[)(IN + 'T)

Xpr: Xolty + (0 = D7), Xyloy + (= D7),

where r = maAr is the time delay, m is an integer, and Af is the sampling
interval.

The time delay must neither be too small, because of the linear dependency
Xy = X, = X, = - = X, |, nor be too large, since that will result in loss of
information (/1).

2.4, The Correlation Dimension

Computing the correlation dimension from a single time-series involves calcu-
fating the distances between pairs of points, |X; — X}{, in pseudo-phase space,
and then counting the data points within a distance, , from point X,. A multidi-
mensional correlation integral C(r) is defined as

N
Coy =32 3 00 = X, - X)),

ig=
where # is the Heaviside function
B(x)y=0 ifx<0 and #lx) =1 ifx=0.
The correlation dimension d, is the relation between log C(r) and log r
d, = LL“;' IC’lgo(g:r(‘r)'
See Refs. (6, 10, 11).



564 TORBIPRN AASEN

Correlation dim.

1 2 3

Subjects

F1G. 5. The correlation dimensicn calculated for nystagmus signals recorded after 30 sec irrigation
of left ear with water at 30°C (L30), 30 sec irrigation of right ear with water at 30°C (R30), 30 sec
irrigation of left ear with water at 44°C (L44), and 30 sec irrigation of right ear with water at 44°C
(R44).

3. RESULTS

Figure 3a shows that the steady state has no dynamics—no geometry in
phase space. The fractal dimension of the steady state is zero. Oscillation (Fig.
3b)is a predictable ever-repeating behavior, with a fractal dimension of one (one
degree of freedom). Noise (Fig. 3d) has no underlying deterministic structuring
components, and randomly occupies the phase plane. The dimension for a so-
called white noise signal is infinite. Deterministic chaos, illustrated with an
ENG signal (Fig. 3c¢), has a global well-defined and stable phase portrait, but
is unpredictable and unstable in the local regions.

3.1. The dimension of the Irregular Nystagmus Paitern

The fractal dimension of the ENG signals was calculated according to the
correlation dimension method introduced by Grassberger and Procaccia (10,
i1), briefly described above. Approximately 2000 data points (N + (n — 1)7)
from the period with the strongest nystagmus response were selected from the
electronystagmographic signals. The selecting criterion was the maximum slow-
phase velocity (SPV), calculated in degrees/sec.

The time-series was reconstructed in a pseudo-phase space, with a time
delay, 1, corresponding to the first zero crossing, or the first minimim of the
autocorrelation function. The correlation dimension (the slope of log C(r) versus
log r in the linear region) was calculated for increasingly higher-dimensional
pseudo-phase spaces, until the dimension value reached an asymptote. This
asymptotic value was considered an estimate of the fractal dimension.

The correlation dimension calculated ranged from 3.3 to 7.7, and is summa-
rized in Fig. 5.
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The correlation dimension measures the ENG signal, projected as a geometric
object in a multidimensional pseudo-phase space. This geometric object is highly
sensitive to dynamic variations in the underlying physiological system and is
therefore of great value in determining the system’s complexity. The results
presented in this paper demonstrate that the high-dimensional vestibular system,
with its numerous neurological pathways, can somehow reduce the degrees of
freedom and give rise to a dynamic low-dimensional, optimal function. (The
main function of the vestibulo-ocular reflex is to hold images steady on the
retina during head movements). Low-dimensional, irregular time-dependent
behavior is a property associated with deterministic chaos.

4, DISCUSSION

Huberman (/5) has presented a mathematical model for dysfunctions in
smooth pursuit eye movement, which exhibits chaotic behavior. His paper
focuses on dysfunction—the eyes’ inability to smoothly track a periodically
rnoving target—as a phenomenon arising from nonlinearities in the eye tracking
mechanisms through deterministic chaos.

The present paper questions if irregularities of the ENG signal from caloric
stimulation reflect the system’s adaptability to the multifunctioning physiologi-
cal environment. There must be a dynamic regime where the eye motor control
system serves the requirement of vision. In addition there may exist a regime
where nonlinear properties/chaos in the vestibular and eye motor control system
autonomously regulate the system as a defense mechanism against too strong
stimuli. If the stimulus threshold for driving the system into chaos is too low,
irregular behavior can impair the eyes’ ability to focus on a moving target.
Thus, the onset of chaos could be a diagnostic criterion. If the two regimes
exist, it will be an important goal to identify the boundary between them. This
will necessitate identifying the physiological parameters which determine the
dynamic behavior of the two states and exploring the intensity of the stimuli
that forces the transition between nonchaotic and chaotic behavior,

Calculating the correlation dimension is a complicated procedure, where
dynamical stationarity is presumed over a minimum period of time. It requires
a set of data points large enough to cover the main structure of the attractor.
However, the caloric reaction is a temporary response which increases to a
maximum, and then decreases. After 2-3 min the response fades out. It can
be difficult to find a time-series of sufficient duration to get a reliable measure
of the fractal dimension. It must also be emphasized that the values given for
the fractal dimension of the ENG signal in this paper should be regarded as
estimates, a first attempt to apply the idea of fractals to vestibular testing. A
standardized methodology for calculating the dimension (choosing an appro-
priate delay time, identifying a linear scaling region, etc.) does not exist. Further
efforts to apply fractal analysis in the field of vestibular testing will require
studies on the many programming-technical problems involved with calculation
of the dimension. The otoneurological implications of the findings must be
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discussed for a physiological explanation, and the possible clinical benefit will
be a result of extensive studies on the different groups of patients tested in the
vestibular laboratory.

From the above discussion of the nystagmus dynamics, a fractal diagnostic
hypothesis of disturbances in the vestibular control system can be put forward:
Disturbances of the verstibular system can change the correlation dimension
in two ways: (1) a pathologically decreased dimension because of reduced
variability, and thus a reduced ability to rapidly regulate the system, and (2) a
pathologically increased dimension because of increased noise—the physiologi-
cal system looses its regulatory functions and is acting more like a noise gen-
crator.

The above distinction motivates the development of techniques for quantify-
ing irregular nystagmus patterns for diagnostic purposes.

4. CONCLUSION

The caloric reaction was discovered around 1850 (76). One and a half centuries
later, the triggering mechanisms of the nystagmus’ fast phase (the active phase,
from a dynamical point of view}, and the underlying control function of the
beat-to-beat variations of the nystagmus, are still not understood.

The chaos model offers a new theoretical framework for understanding the
regulating mechanisms concerned with balance and equilibrium. This frame-
work is oriented towards biological information processing (the system’s behav-
ior is determined by information from the vestibular, the visual, and the somato-
sensory system), adaptability (to the multifunctioning physiological and
external environment), and optimizing {to orient the body in space and to hold
images steady on the retina). The complex unpredictable beating of nystagmus
is interpreted as a phenomenon accompanying a healthy functional system.

In the vestibular laboratory, various techniques are available for a routine
clinical examination. Developing new methods to distinguish between pathologi-
cal and normal variations in the ENG signal may expand the vestibular test
battery and improve ENG as a diagnostic tool. The development of chaos
theory and fractal analysis might be a milestone toward reaching this goal.
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