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In this study, optokinetic nystagmus (OKN) is hypothesized to be controlled by a low-
dimensional deterministic and possibly chaotic generator. A procedure for quantifying the
presumably low-dimensional structure of the OKN signal, based on the Singular Spectrum
Approach and the Grassberger–Procaccia algorithm for estimating the correlation dimension,
n, is described. The procedure developed showed robustness against noise. Applying this
method to OKN signals from 10 healthy subjects and 10 patients suffering from vertigo showed
a statistically significant lower mean n value for the patients.  1997 Academic Press

1. INTRODUCTION

One of the tests used in the clinical evaluation of patients suffering from
vertigo (dizziness) is the optokinetic test (1). Presented with a moving image,
the eyes respond with a movement in the same direction as the image, interrupted
by quick resetting phases. These reflexive, rhythmic eye movements, named
optokinetic nystagmus (OKN), interact with the vestibulo-ocular reflex and the
smooth pursuit function to hold objects steady on the retina. Despite this rela-
tively simple function, the optokinetic nystagmus signal exhibits complicated
behavior. Captured in the orbital cavity, the eyes bounce forth and back in a
nonregular pattern (Fig. 1).

The mathematical ideas of deterministic, chaotic dynamics have introduced a
new conceptual framework to understand and interpret dynamical phenomena.
In medicine, where the complexity of physiological information processing often
prevents us from making a reliable diagnostic evaluation, it is particularly interest-
ing to see if the new tools in dynamical analysis can reveal information of
clinical relevance.

To our knowledge, the first work in which nonlinear methods based on chaos
theory were applied to OKN signals was published in 1992 by Shelhamer (2).
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FIG. 1. Five-second registration of an optokinetic time series. Upward direction represents eye
movement to the right, downward to the left. The optokinetic stimulation consists of vertical stripes
moving with a constant velocity of 308/sec to the left.

He used the correlation dimension, n, to detect nonlinear structure in the OKN
signal, and he concluded that his procedure could evidently identify a chaotic
underlying system. In 1990 and 1993, Aasen (3, 4) applied the same method to
calorically induced nystagmus (bithermal water stimulation of the vestibular
apparatus in the inner ear), and demonstrated that the underlying vestibular
system can be described by a low-dimensional deterministic, possibly chaotic,
system. Another study on calorically induced nystagmus (5) applied the correla-
tion dimension parameter in order to discriminate between various vertigo types.
The group of patients with normal test results (conventionally interpreted) and
no detectable cause for their dizziness differed from the other groups by a
statistically signfiicant lower mean n value. These preliminary reports motivated
us to test whether the new analytic tools from the field of nonlinear dynamics
can add some new information of clinical relevance. Before we reach this goal
and hand the methods over to the clinicians, the methods must be thoroughly in-
vestigated.

In the present study it is hypothesized that nonregular optokinetic nystagmus
behavior is due to nonlinear properties in the underlying physiological regulating
system, and we focus on the correlation dimension estimate in order to character-
ize the presumable low-dimensional structure of the nystagmus attractor (cf.
Section 3).

Based on the above considerations, our main goal was to find a standard
procedure to compute the correlation dimension, i.e., choosing an appropriate
method for the reconstruction of the state space with a certain parameter setting
for the OKN signal (6, 7). Further, we wanted to see how the estimated dimension
varied under different conditions of optokinetic stimulations.

In the next section, the recording specifications for the OKN signal are given.
In Section 3, the state space reconstruction and the estimation of the corre-
lation dimension are discussed. Finally, in Section 4, various aspects of apply-
ing the correlation dimension to OKN signals are considered and a pro-
cedure for the estimation is presented and applied to evaluate the OKN
dynamics.
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TABLE 1

THE DIFFERENT TYPES OF VERTIGO

Patient Vertigo types

1. Posttraumatic encephalopathia
2. Barotrauma of the left ear
3. Chronic otitis with fistula; reduced function of the left vestibular organ
4. Progressive cerebellar atrophy with ataxia
5. Acoustic neurinoma of the VIIIth cranial nerve on the right side
6. Vestibular neuronitis, no sequele
7. Other vestibular etiology
8. Central etiology other than vascular
9. Central vascular lesion

10. Central vascular lesion

2. OPTOKINETIC TEST

2.1. Subjects

The OKN signals were recorded in 10 healthy subjects (mean age 5 27 years,
range 22 to 36) and 10 patients suffering from vertigo (mean age 5 57 years,
range 21 to 75). The patients diagnoses are given in Table 1.

2.2. Recording Technique

Horizontal eye movements were recorded with two electrodes (Ag–AgCl skin
electrodes), placed laterally to each eye, and a reference electrode at the center
of the forehead. The signal was amplified (10-sec time constant and an upper
cutoff frequency of 30 Hz) and digitized into an IBM-compatible computer, using
12-bit A/D resolution and 100 Hz sampling frequency (sampling time ts 5 0.01).

2.3. Optokinetic Stimulation and Registration

Optokinetic nystagmus was obtained by stimulating the visual field with 3.758
width vertical light stripes separated by 11.258 width dark stripes. A slit projector
presented the stripes on the inside of a hemispherical screen (100 cm in diameter).
The subjects were sitting in front of the screen in a darkened room and were
instructed not to follow the stripes with the eyes, but to focus their vision on
the screen, allowing the optokinetic reflex to control the eye movements.

For the purpose of evaluating the response to different stimulation strengths,
we used stripes moving with a velocity of 30 and 608/sec, which are below and
above the normal threshold for smooth pursuit function, respectively (8, 9). Four
registrations were performed on each subject according to the direction and the
velocity of the movement of the stripes: Left 308/sec (L30), Right 308/sec (R30),
Left 608/sec (L60), Right 608/sec (R30). Between each test the subject was resting
for a minimum of 60 sec in a darkened room.
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3. METHODS

Our analyses make use of nonlinear methods based on chaos theory (the
theory of deterministic systems with apparently random evolution due to sensitive
dependence on small changes in the initial conditions (7)). In terms of chaos
theory, geometrical objects formed by the system trajectories (so-called at-
tractors) are characterized by fractal dimension. For attractors from regular
deterministic systems, e.g., limit cycles or tori, the fractal dimension is equal to
their topological dimension, but for attractors from chaotic systems (strange
attractors) it is typically a noninteger that indicates their fractal structure. Among
various measures of the fractal dimension the most common is the correlation
dimension due to its computational simplicity (7, 10).

3.1. Grassberger–Procaccia’s Algorithm (GPA)

The correlation dimension n is given by the scaling law

C(r) Y r n [1]

for small r (11, 12). C(r) is the correlation integral giving the probability of the
interdistances of points on the attractor smaller than a radius r,

C(r) 5
2

N(N 2 1) O
N21

i51
ON

j5i11
u (r 2 uxi 2 xju), [2]

and u is the Heaviside function defined as u(r) 5 0 for r , 0 and u(r) 5 1 for
r $ 0 (for the definition of x and N see Section 3.2.).

In practice, the correlation integral C(r) is computed first, and then n is esti-
mated by the linear scaling between log C(r) and log r over a sufficient interval
of r.

Certain parameters of GPA influence the estimation of n and therefore must
be adjusted properly. Neighbor points in state space that also are temporally
close corrupt the computation of C(r) (13). Therefore, points that are closer in
time than some time limit corresponding to K data points are omitted from the
calculations. The parameter K is called the ‘‘autocorrelation length.’’ The slope
between log C(r) and log r, which gives the estimated n, can be computed either
by linear regression or from the plateau of the first derivative of log C(r) over
a scaling interval of distances [r1 , r2]. Line fitting can always be applied, even
when there is no real scaling. On the other hand, the derivative does not display
a flat plateau unless the scaling is very clear. We prefer to estimate n from the
derivative of log C(r) and report the uncertainty by the standard deviation of
the estimate.

To apply GPA to time series, a multidimensional state space from the scalar
measurements is constructed first, and then the correlation integral is calculated
for the reconstructed attractor.



CORRELATION DIMENSION OF OPTOKINETIC NYSTAGMUS 99

3.2. Reconstruction of the State Space

Given a time series, an attractor can be embedded in a multidimensional state
space. It is known that under certain conditions the reconstructed attractor
preserves the topology of the original attractor of the system that generated the
data (14–16). Working with OKN time series data from the vestibular system,
the expression ‘‘the original attractor’’ refers to the interactivity of the global
variables of the system. Carefully chosen reconstruction schemes are needed in
order to maintain the equivalence of the two attractors.

In our work with OKN data, we have evaluated the two most common recon-
struction methods, the Method of Delays (MOD) and the Singular Spectrum
Approach (SSA). For both methods, the chosen parameter setting is crucial for
the estimation of v. In the following we shortly outline the two methods and
their parameters; details can be found elsewhere (e.g., 17–20).

The sampled optokinetic nystagmus signal is denoted hxijN
i51 5 hx(its)jN

i51 , where
ts is the sampling time and N is the length of the time series.

3.2.1. Method of Delays. The reconstructed state vector with MOD is formed
directly from the scalar measurements (21)

xi 5 [xi , xi1t , . . . , xi1(m21)t]T, [3]

where t is the delay time, given as a multiple integer of the sampling time ts ,
and m is the embedding dimension of the reconstructed space. The parameters
t and m give the time window tw of length (m 2 1)t. The N 2 (m 2 1)t 3 m matrix

X 5 [x1x2 . . . xN2(m21)t]T [4]

is then the constructed trajectory matrix.
The delay time t is usually estimated as the value giving the least correlation

among the components of xi . Linear decorrelation is obtained by choosing the
first zero of the autocorrelation function R(t)(R(t0) 5 0) or the correlation time
tc corresponding to R(t) 5 1/e, while general decorrelation is determined as the
first local minimum of the mutual information function I(t) (min I(t) 5 I(tm))
(22). However, these two functions often provide very large estimates of t for
the OKN time series, as shown in Fig. 2. This may result in a poor description
of the details of the geometric shape of the attractor. In Fig. 3 we give illustrations
of three MOD reconstructions of the OKN signal in R 2 with an arbitrary short
delay time (t 5 8), the minimum of I(t), and the correlation time tc .

For the embedding dimension m, a lower limit for the reconstruction to be
valid is given by Taken’s theorem, m $ 2d 1 1 (14). Taken originally proposed
d to be the topological dimension, but recent theoretical results relax this criterion
assigning d to the fractal dimension of the underlying attractor (16). In practice,
however, lower values for m are often sufficient to reconstruct the attractor
successfully, and one typically searches for the minimum embedding dimension
m*. A method often used to estimate m* is the False Nearest Neighbors (FNN)
(23). This method applies a geometrical criterion—based on the behavior of
spatially near neighbors—to the attractor embedded in successively higher di-
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FIG. 2. The autocorrelation function R(t) and mutual information function I(t) of an optokinetic
signal. Both R(t) and I(t) are normalized dividing with R(0) and I(0), respectively. The local minimum
of I(t), tm 5 41, and the autocorrelation time, tc 5 133, are marked. Note that the zero of R(t) is
not reached within this interval of lags.

mensions until a limit m* is reached where the criterion is fulfilled. The implemen-
tation of this method to OKN data did not give unique m* but showed a depen-
dence of m* on t as shown in Fig. 4.

In the correlation dimension estimation with MOD reconstruction, only t is
the critical parameter since m is increased in order to investigate if there is a
saturation of the scaling of log C(r) vs log r.

3.2.2. Singular Spectrum Approach. Using SSA for the reconstruction, the
state vector

FIG. 3. Reconstructions of an optokinetic signal with MOD in R2 and (a) t 5 8, (b) t 5 tm 5 41,
and (c) t 5 tc 5 133.
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FIG. 4. The percentage of false nearest neighbors for increasing m. The 1% limit, often used as
threshold level, is shown as a dashed horizontal line. The five lines correspond to reconstructions
with MOD and t 5 8, t 5 15, t 5 30, tm 5 41, and tc 5 133, giving different estimates of m*.

xi 5 [xi , xi11 , . . . , xi1(p21)]T [5]

is formed for p large and t 5 1, where the mean value of the time series is first
subtracted from xi . The trajectory in R p is then the (N 2 p 1 1) 3 p matrix

X 5 [x1x2 ? ? ? xN2p11]T. [6]

A new basis for R p is formed by the p singular vectors of X computed with the
Singular Value Decomposition (SVD) (17). The trajectory is then projected onto
the m first singular vectors ranked according to the variance they explain, which
correspond to the m largest singular values si of X. The final (N 2 p 1 1) 3 m
trajectory matrix is

Y 5 [xT
1 C xT

2 C ? ? ? xT
N2p11C]T, [7]

where the p 3 m matrix C has the m first singular vectors as columns.
The parameters of this method are the initial embedding dimension p and the

final embedding dimension m. The initial embedding dimension p determines
the time window length tw 5 (p 2 1). For the estimation of m, the cutoff of the
spectrum of singular values (s1 . ? ? ? . sm* @ sm*11 . ? ? ? . sp) has been
proposed, but for signals from nonlinear systems such a cutoff is not guaran-
teed (24).

Another approach to read m from the singular spectrum is to define a level
of significance for the singular values. It is natural to choose it as the level of
the noise floor, but this gives an undesirably large m* unless the signal is very
noise-corrupted. We believe that any general choice for m* from the singular
spectrum should be regarded as arbitrary in terms of nonlinear signal analysis,
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FIG. 5. The semilog plot of the normalized singular spectrum of an optokinetic signal (normalized
by dividing with the first singular value). As shown in the figure the fall of the singular spectrum
varies with p.

simply because the fall of the singular spectrum varies with p, as is shown for
the OKN signal in Fig. 5.

Figure 6 illustrates the reconstructions with SSA of an OKN signal in R3 and
p 5 55 (which is the mean intersaccadic interval; cf. Section 4). The three figures
are the projections onto the planes formed by the three first singular vectors
explaining about 60% of the variation of the data.

Based on an earlier study of one of us (20) we believe that the overall parameter
for state space reconstruction (with MOD or SSA) is the time window length
tw . In the next section, we validate these points when estimating the correlation
dimension of the OKN signal.

4. THE ESTIMATION OF n FOR OKN DATA

Concerning the parameter setting for GPA, we estimated n from the plateau
of the first derivative of log C(r) over the interval [r1, r2] with r2/r1 5 4, choosing

FIG. 6. Three 2-dimensional views of a 3-dimensional subspace formed by the combinations of
the three first singular vectors, also called principal components (PC), of the reconstruction with
SSA with initial embedding dimension p 5 55: (a) PC1 and PC2, (b) PC1 and PC3, and (c) PC2
and PC3.
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FIG. 7. The estimation of n with autocorrelation length K 5 1 and 50 for reconstructions with
SSA (m 5 10, N 5 6000): (a) p 5 100 results in too low estimate of n for K 5 1. (b) p 5 55 gives
no significant effect of K. (The same result is obtained using MOD.)

the interval that gives minimum standard deviation. An approximation to the
derivative was performed by linear regression on each point and its two neighbors.
Another parameter which turns out to be critical for the OKN data was the
autocorrelation length K, as shown in Fig. 7 (13). In fact, the effect of K concerns
only reconstructions with large tw . For larger tw the interdistances of points get
larger and thus for small r values the time-correlated points affect critically the
statistics of interdistances, giving a lower correlation dimension due to the colin-
ear structure of these data points. The time scale where K starts to alter the
estimated dimension is dependent on the sampling time ts . Faster sampling time
increases the number of neighboring points in state space that also are temporarily
close, and thus the K value has to be set higher in order to eliminate linear depen-
dency.

We have applied the GPA method to reconstruct the OKN signal with both
MOD and SSA. For MOD reconstructions, the estimation of n varies with the
parameter setting (Fig. 8). The saturation of the scaling area, if any, could only
be observed for large tw , e.g., large m in combination with a large t as in Fig.
8b. However, even when there was some sign of saturation, the scaling was very
poor due to the embedding of a limited number of points in a high-dimensional
space. This result is in agreement with similar work on other types of physiological
data (25).

The application of the GPA to SSA reconstructions implies the computation
of n for the OKN data embedded in subspaces of R p of successively higher m,
where m varies from 2 to p. For each selection of p (which indicates the time
window length, tw 5 p 2 1), saturation is always achieved. For some limit m9
the curves for all m $ m9 almost coincide because the variation of the attractor
along the new directions (the p 2 m9 singular vectors) is negligible, and if tw is
not very large a clear scaling is always observed (see Fig. 9). For tw larger than
about three times the mean intersaccadic interval (see below), the scaling breaks
down. However, we often observe a saturation of v with a clear scaling region,
i.e., with a relatively small standard deviation (SD(r2 /r154)) before the scaling
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FIG. 8. Correlation integral C(r) and the derivative (the slope betwen log C(r) and log r) as a
function of log r. Reconstruction was done using MOD and t 5 8 in (a) and t 5 tm 5 41 in (b).
Embedding dimensions are plotted for m 5 2, . . . , 20, i.e., tw 5 8, 16, . . . , 152 in (a) and tw 5

41, 82, . . . , 779 in (b). The graphs at the bottom focus on the scaling area r2/r1 5 4 with the smallest
standard deviation for m 5 20. The number of data points was N 5 6000 for both (a) and (b).
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FIG. 8—Continued
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FIG. 9. Correlation integral C(r) and the slope with SSA for p 5 55 in (a) and p 5 165 in (b).
Embedding dimensions are plotted for m 5 2, . . . , 20. The graphs at the bottom focus on the
scaling area r2/r1 5 4 with the smallest standard deviation for m 5 20. The number of data points
was N 5 6000 for both (a) and (b).
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FIG. 9—Continued
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FIG. 10. The relation between the estimated n (using SSA) and the windows length tw . A clear
saturation of the n value of about 4.5 is seen before the scaling breaks down. We also observe the
lack of scaling area for a uniformed distributed noise signal smoothed with a 10-point moving average
filter. The error bars show the standard deviation of the n estimate in the interval [r1 , r2]. For the
optokinetic signal the p embedding dimension was projected onto the 10 most significant singular
vectors (m 5 10), which according to Fig. 9 totally defines the distribution of the points on the
attractor. For the noise signal, m was set equal to p for p % 45. For p . 45, m was fixed to 45. The
number of data points was N 5 6000 for both signals.

collapses for larger tw , as shown in Fig. 10. Similar results are found when
adding noise to data from simulated chaotic systems, e.g., Lorenz or Rössler
(20). Applying the same procedure to a computer-generated smoothed noise-
signal (Fig. 10) demonstrates the lack of scaling area for a random signal. A
consequence of applying our automated procedure to random signals is an under-
estimation of n, since the smallest SD(r2 /r154) is found for large r, where the
correlation integral saturates.

The method of surrogate data (26) provides further evidence of an underlying
nonlinear structure in the reflexive eye movement signal, when constrained by
optokinetic stimulation (Fig. 11). The surrogate data were generated by first
transforming the original time series to the frequency domain using Fourier
transform, randomizing the phases, and then transforming back to the time
domain using inverse Fourier transform. The surrogate data generated as de-
scribed above have the same linear correlations as the original, e.g., they have
the same autocorrelation function. The differences in estimated n values are
therefore a result of nonlinearity in the data.

4.1. Which Reconstruction Method To Choose

The need to choose a standard procedure to derive estimates of n is evident
from the results using MOD and SSA reconstructions. When searching for nonlin-
ear structures in OKN signals, it is desirable to eliminate redundant information
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FIG. 11. The slope between log C(r) and log r for an OKN signal and for the mean and standard
deviation of 20 surrogate data generated from the OKN-signal. For both the optokinetic signal and
the surrogate data, p 5 90 embedding dimension (see Fig. 10) was projected onto the 20 most
significant singular vectors (m 5 20). The number of data points was N 5 6000.

about linear correlated patterns in the data. This is achieved with SSA which
provides m linearly independent coordinates for any tw . Consequently, the signal-
processing effect of SSA is an accentuation of the nonlinear structure in the signal.
This is important when analyzing the OKN signal, which is highly dominated by
slow phases (see Fig. 1) with approximately linear properties. The SSA recon-
struction also serves as a built-in filter, ranking the coordinate axes according
to the variance they explain in the data. To maintain linear independency with
MOD, a large t must be used, as emphasized by the decorrelation criteria, which
results in an undesirably large tw , giving no clear scaling. Another advantage of
using SSA is that once tw is chosen, the estimation of n is straightforward, since
the saturation for increasing m is guaranteed whenever the data show correlation.

The above considerations point out SSA as our choice.

4.2. Estimation Criterion

The estimation of n requires that the linear scaling of log C(r) vs log r and
the saturation of n with increasing window length tw are within some limits.
We applied the following procedure: For each initial embedding dimension p
(corresponding to a tw), the pseudo-state space was projected onto the subspace
spanned by the m 5 10 largest singular vectors (see Fig. 10) and the slope was
estimated in this subspace. The p was increased from p 5 10, in increments of
10 (p 5 10, 20, 30 . . .) until the difference between the maximum and minimum
values of three successive slopes was below a predefined value. If this convergence
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FIG. 12. The relation between the estimated correlation dimension n and the time series length
expressed in multiples of the mean intersaccadic interval. Reconstruction was done with SSA and
the parameter setting p 5 K 5 tNN 1 1 5 90 and m 5 10.

criterion was not reached for p # 150, a ‘‘not accepted’’ message was returned.
Further, if the standard deviation1 of the three accepted slopes was below a
predefined level, the n value was estimated to be the mean of the three slopes;
otherwise, the not accepted message was returned.

4.3. The Time Series Length

Another important constraint in the computation of n is the time series length,
which should be long enough to represent clearly the reconstructed geometric
object in state space. We evaluated the minimum OKN time series length in
multiples of the intersaccadic interval, the so-called Nystagmus–Nystagmus inter-
val (NN interval, tNN). The intersaccadic interval corresponds physiologically to
the time intervals between the onset of consecutive fast components; functionally,
it corresponds to the ‘‘smallest component’’ fulfilling the requirement of un-
blurred vision (the eyes follow the image, interrupted by the fast resetting phase
(the saccade)) and mathematically it corresponds to the dynamical excursion
(the presumably fractal structure evolves from this ‘‘variations over the same
theme’’). Practically, tNN is simply the average of the time between maximums
of the OKN time series, as shown in Fig. 1. To avoid false peaks due to noise,
the data were filtered before the computation of tNN .

Figure 12 shows that the dimension does not change significantly after a time
series length of approximately 60 tNN , which in the illustrated example is about
2000 data points (tNN 5 32). However, longer time series give more confident esti-
mates.

Testing the hypothesis that the time series length necessary for estimating the

1 This is the standard deviation of the plateau of the first derivative of log C(r) vs log r over the
interval [r1 , r2] with r2/r1 5 4.
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dimension is related to the number of NN intervals, and not directly to the
number of data points (provided that the number of data points describing the
NN interval reveal the overall geometric structure), we calculated the dimension
for an OKN signal (cf. Fig. 10) using ts 5 0.01, 0.02, and P0.03 (keeping every
second and third data point) and the same window length tw (p 5 90, 45, and
30, respectively). For ts 5 0.01 (n 5 6000) n was estimated to 4.48 (0.2), for
ts 5 0.02 (n 5 3000) n was 4.66 (0.39), and for ts P 0.03 (n 5 2000) we estimated
n 5 4.64 (0.47). Standard deviations are given in parentheses. Reducing the
number of data points to the half and third while keeping the window length tw

constant changed the estimated n by only 0.18 and 0.16, respectively. This result
supports the assumption that the information content of the OKN signal is related
to the intersaccadic interval.

4.4. Filtering and Noise

To evaluate the robustness of the procedure, the estimates of n for the OKN
signals were compared to the estimates of the filtered OKN signals as well as
the OKN signals corrupted with noise.

To smooth the signal, we used a standard low-pass FIR-filter of length 5 (cutoff
frequency2 of about 9 Hz, first zero crossing of the frequency response at 20 Hz)
and a Savitzky and Golay (SG) 13-point cubic polynomial (27) (cutoff frequency
of about 8 Hz, first zero crossing of the frequency response at 13 Hz).

To corrupt the OKN signal, Gaussian distributed noise with a SD of 5 and
10% the SD of the OKN signal was superimposed on the signal. It turned out
that in the computation of the correlation integral, smoothing and noise affected
only small interdistances, while the scaling was always observed in larger intervals
of r as shown in Fig. 13. This is in contrast to earlier studies pointing out that
linear filtering and adding noise to data can alter the estimated correlation
dimension significantly (28). Our procedure applied to the OKN signal is robust
to these changes.

4.5. Evaluating the OKN Dynamics

The procedure used for computing the correlation dimension of the OKN
signals is summarized in the following steps:

Time series length: N 5 6000.
(1) Project the p (p 5 10, 20, . . .) pseudo-state space onto the subspace

defined by the first m 5 10 singular vectors computed from the SVD
of the trajectory matrix (m is larger than the number of the significant
singular vectors).

(2) Compute the correlation integral C(r), setting the parameter of autocorre-
lation length K to p 5 tNN 1 1.

(3) Estimate the slope between log C(r) and log r from the mean value of

2 The cutoff frequency was defined by the 23-dB level.
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FIG. 13. (a) Estimation of n for an optokinetic signal, for the optokinetic signal with superimposed
noise, and for the smoothed optokinetic signal. Reconstruction was done with SSA and the parameter
setting p 5 K 5 55, m 5 10 and N 5 6000. (b, c) Estimated n and SD(r2/r1

54) as a function of the
time window length (m 5 10 and N 5 6000).

the first derivative of log C(r) over the scaling interval r2/r1 5 4 which
gives the smallest standard deviation.

(4) Repeat (1) to (3), increasing p in increments of 10, until the convergence
and scaling criteria are obtained. The n value is estimated as the mean of
the last three computed slopes. If p . 150 is reached, a not accepted
message is returned.

Testing for difference in the mean value of the estimated n for the patients
and the healthy subjects (applying the Student t test) for various combinations
of the convergence and scaling criteria gave a statistically significant lower mean
n value for the patients (defined by a P value , 0.05) for a large section of
parameter space (Fig. 14a). A convergence criterion of nmax 2 nmin 5 0.5 and a
scaling of SD(r2/r154) 5 0.8 gave, e.g., a P value of 0.018 [patients: mean 5 4.35
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FIG. 14. (a) The vertical axis gives the P value from the statistical test (Student t test) of the
difference in mean n value between the group of vertigo patients and the healthy subjects, as a
function of the convergence and scaling criterion. A large section of parameter space displays a P
value below 0.05 (the dark area). (b) The same as (a), but here testing for difference between
optokinetic stimulation below (308/sec) and above (608/sec) the threshold of smooth pursuit function.
Statistical significance is not observed for any combinations of the convergence and scaling criterion.
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(0.96), n 5 32; healthy subjects: mean 5 4.88 (0.71) n 5 28; n is the number of
accepted n values of 40 registrations from each group according to Section 2].
A correlation coefficient of 20.12 and an estimated b parameter of 20.0066
from the fitted regression line to the correlation dimension, n 5 a 1 bx, where
x is the age of the patients, indicates that the reported statistical significant
difference between the two groups is not caused by the higher mean age in the
group of patients. This result indicates a shift in the dynamics of the OKN
generator for the patients, and it is likely that these disturbances of the underly-
ing regulating mechanism also cause a reduced functionality of the balance
system.

When we tested for difference between the response to optokinetic stimulation
of 30 and 608/sec, no such area appeared (Fig. 14b). We also randomly divided
all 80 registrations (mixing both healthy subjects and patients) in two groups
and generated the same surface plot. This was done 10 times, and all of the plots
were comparable to Fig. 14b, with no area of significant P values.

5. DISCUSSION

The choice of SSA as the applied reconstruction method was based on practical
considerations, mainly because it turned out to be a robust method. We do
not claim that this technique is the most effective for extracting the dynamical
properties of the OKN signal, or that the estimated n value under the suggested
procedure reveals the ‘‘true’’ dimensionality of the underlying physiological sys-
tem. However, we believe that the n value estimated here gives a measure of
the variability of the signal, which reflects the interplay between the active
components of the system, and thus is related to the global dimensionality.

Our aim was to find a robust procedure which gives a parameter that is related
to the global dynamics of the vestibular system. A further step is to evaluate the
possible clinical sensitivity of the method. This is of importance for the clinician
who uses these signals for diagnostic purposes. The argument for possible clinical
relevance can be put forward as follows: If the eye movement is pertinent to
the vestibular system, and the pattern which falls within the window, tw , gives
information of the state of the underlying physiological regulating system—which
according to the applied method means that certain pathological conditions
change the structure of the reconstructed nystagmus-attractor—then the correla-
tion dimension, n, can be regarded as a parameter of clinical relevance. In that
case we will have a diagnostic tool comparable to, e.g., measuring the temperature
of the body.

The fact that we find a statistically significant lower mean n value for the group
of vertigo patients compared to the healthy subjects could reflect a reduced
functionality of the vestibular system in the vertigo group (e.g., a reduced ability
to rapidly regulate and adapt to the ever-changing environment). The number
of patients of each vertigo type was too small to establish any differences between
them. Obviously, a study for evaluating the clinical validity of the method must
include much larger groups with different vertigo types.
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The fact that we did not find statistical difference between the average n values
to optokinetic stimulation above and in the range of smooth pursuit function3

indicates that it is the same underlying physiological regulating mechanism which
is active under both conditions.

In contrast to Shelhamer (2) we found that the correlation dimension of the
OKN signal is dependent on the time window tw .

6. CONCLUSION

The combination of the singular spectrum approach and the Grassberger–
Procaccia algorithm for correlation dimension estimation fulfilled the require-
ment of a robust procedure, which could be used to evaluate the dynamics of
the optokinetic nystagmus pattern. A statistically significant lower mean n value
in the group of vertigo patients compared to the healthy subjects was found.

It is not yet clear which qualities in the underlying physiological system the n
value reflects. Observing changes in the n value according to various conditions
(e.g., different levels of light intensity, different speed of the moving stripes) will
give valuable information and point out relevant physiological correlates.

The procedure must be tested further for reliability (e.g., test–retest in a
suitable population) and for possible clinical validity (e.g., the procedure applied
to large representative groups with different vertigo types).
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